资源类型

期刊论文 911

年份

2023 67

2022 94

2021 62

2020 45

2019 51

2018 36

2017 33

2016 42

2015 47

2014 46

2013 42

2012 56

2011 42

2010 50

2009 41

2008 30

2007 34

2006 15

2005 10

2004 11

展开 ︾

关键词

水资源 16

细水雾 14

可持续发展 6

泥水盾构 6

反渗透 5

水环境 4

砂卵石地层 4

超滤 4

三峡工程 3

优化 3

农业节水 3

半旱地农业 3

DX桩 2

Preissmann格式 2

三塔悬索桥 2

中国西北地区 2

京津冀 2

光催化 2

养殖模式 2

展开 ︾

检索范围:

排序: 展示方式:

A thermoelectric generator and water-cooling assisted high conversion efficiency polycrystalline silicon

Zekun LIU, Shuang YUAN, Yi YUAN, Guojian LI, Qiang WANG

《能源前沿(英文)》 2021年 第15卷 第2期   页码 358-366 doi: 10.1007/s11708-020-0712-1

摘要: Solar energy has been increasing its share in the global energy structure. However, the thermal radiation brought by sunlight will attenuate the efficiency of solar cells. To reduce the temperature of the photovoltaic (PV) cell and improve the utilization efficiency of solar energy, a hybrid system composed of the PV cell, a thermoelectric generator (TEG), and a water-cooled plate (WCP) was manufactured. The WCP cannot only cool the PV cell, but also effectively generate additional electric energy with the TEG using the waste heat of the PV cell. The changes in the efficiency and power density of the hybrid system were obtained by real time monitoring. The thermal and electrical tests were performed at different irradiations and the same experiment temperature of 22°C. At a light intensity of 1000 W/m , the steady-state temperature of the PV cell decreases from 86.8°C to 54.1°C, and the overall efficiency increases from 15.6% to 21.1%. At a light intensity of 800 W/m , the steady-state temperature of the PV cell decreases from 70°C to 45.8°C, and the overall efficiency increases from 9.28% to 12.59%. At a light intensity of 400 W/m , the steady-state temperature of the PV cell decreases from 38.5°C to 31.5°C, and the overall efficiency is approximately 3.8%, basically remain unchanged.

关键词: photovoltaic (PV)     thermoelectric generator     conversion efficiency     hybrid energy systems     water-cooled plate (WCP)    

Corrosion mechanisms of candidate structural materials for supercritical water-cooled reactor

Lefu ZHANG, Fawen ZHU, Rui TANG

《能源前沿(英文)》 2009年 第3卷 第2期   页码 233-240 doi: 10.1007/s11708-009-0024-y

摘要: Nickel-based alloys, austenitic stainless steel, ferritic/martensitic heat-resistant steels, and oxide dispersion strengthened steel are presently considered to be the candidate structural or fuel-cladding materials for supercritical water-cooled reactor (SCWR), one of the promising generation IV reactor for large-scale electric power production. However, corrosion and stress corrosion cracking of these candidate alloys still remain to be a major problem in the selection of nuclear fuel cladding and other structural materials, such as water rod. Survey of literature and experimental results reveal that the general corrosion mechanism of those candidate materials exhibits quite complicated mechanism in high-temperature and high-pressure supercritical water. Formation of a stable protective oxide film is the key to the best corrosion-resistant alloys. This paper focuses on the mechanism of corrosion oxide film breakdown for SCWR candidate materials.

关键词: supercritical water-cooled reactor     general corrosion     oxide film     corrosion mechanism    

Studies on advanced water-cooled reactors beyond generation III for power generation

CHENG Xu

《能源前沿(英文)》 2007年 第1卷 第2期   页码 141-149 doi: 10.1007/s11708-007-0018-6

摘要: China s ambitious nuclear power program motivates the country s nuclear community to develop advanced reactor concepts beyond generation III to ensure a long-term, stable, and sustainable development of nuclear power. The paper discusses some main criteria for the selection of future water-cooled reactors by considering the specific Chinese situation. Based on the suggested selection criteria, two new types of water-cooled reactors are recommended for future Chinese nuclear power generation. The high conversion pressurized water reactor utilizes the present PWR technology to a large extent. With a conversion ratio of about 0.95, the fuel utilization is increased about 5 times. This significantly improves the sustainability of fuel resources. The supercritical water-cooled reactor has favorable features in economics, sustainability and technology availability. It is a logical extension of the generation III PWR technology in China. The status of international R&D work is reviewed. A new supercritical water-cooled reactor (SCWR) core structure (the mixed reactor core) and a new fuel assembly design (two-rows FA) are proposed. The preliminary analysis using a coupled neutron-physics/thermal-hydraulics method is carried out. It shows good feasibility for the new design proposal.

关键词: Chinese situation     selection     generation     water-cooled     feasibility    

Feasibility analysis of modified AL-6XN steel for structure component application in supercritical water-cooled

Xinggang LI, Qingzhi YAN, Rong MA, Haoqiang WANG, Changchun GE

《能源前沿(英文)》 2009年 第3卷 第2期   页码 193-197 doi: 10.1007/s11708-009-0030-0

摘要: Modified AL-6XN austenite steel was patterned after AL-6XN superaustenitic stainless steel by introducing microalloy elements such as zirconium and titanium in order to adapt to recrystallizing thermo-mechanical treatment and further improve crevice corrosion resistance. Modified AL-6XN exhibited comparable tensile strength, and superior plasticity and impact toughness to commercial AL-6XN steel. The effects of aging behavior on corrosion resistance and impact toughness were measured to evaluate the qualification of modified AL-6XN steel as an in-core component and cladding material in a supercritical water-cooled reactor. Attention should be paid to degradation in corrosion resistance and impact toughness after aging for 50 hours when modified AL-6XN steel is considered as one of the candidate materials for in-core components and cladding tubes in supercritical water-cooled reactors.

关键词: supercritical water cooled reactor     tensile     impact toughness     corrosion     aging    

Experimental study of critical flow of water at supercritical pressure

Yuzhou CHEN, Chunsheng YANG, Shuming ZHANG, Minfu ZHAO, Kaiwen DU, Xu CHENG

《能源前沿(英文)》 2009年 第3卷 第2期   页码 175-180 doi: 10.1007/s11708-009-0029-6

摘要: Experimental studies of the critical flow of water were conducted under steady-state conditions with a nozzle 1.41 mm in diameter and 4.35 mm in length, covering the inlet pressure range of 22.1-26.8 MPa and inlet temperature range of 38-474°C. The parametric trend of the flow rate was investigated, and the experimental data were compared with the predictions of the homogeneous equilibrium model, the Bernoulli correlation, and the models used in the reactor safety analysis code RELAP5/MOD3.3. It is concluded that in the near or beyond pseudo-critical region, thermal-dynamic equilibrium is dominant, and at a lower temperature, choking does not occur. The onset of the choking condition is not predicted reasonably by the RELAP5 code.

关键词: critical flow     supercritical water-cooled reactor(SCWR)     reactor safety     loss of coolant accident(LOCA)    

Experience gained in analyzing severe accidents for WWER RP using CC SOCRAT

《能源前沿(英文)》 2021年 第15卷 第4期   页码 872-886 doi: 10.1007/s11708-021-0796-2

摘要: The current Russian regulatory documents on the safety of nuclear power plant (NPP) specify the requirements regarding design basis accidents (DBAs) and beyond design basis accidents (BDBAs), including severe accidents (SAs) with core meltdown, in NPP design (NP-001-15, NP-082-07, and others). For a rigorous calculational justification of BDBAs and SAs, it is necessary to develop an integral CC that will be in line with the requirements of regulatory documents on verification and certification (RD-03-33-2008, RD-03-34-2000) and will allow for determining the amount of data required to provide information within the scope stipulated by the requirements for the structure of the safety analysis report (SAR) (NP-006-16). The system of codes for realistic analysis of severe accidents (SOCRAT) (formerly, thermohydraulics (RATEG)/coupled physical and chemical processes (SVECHA)/behavior of core materials relocated into the reactor lower plenum (HEFEST)) was developed in Russia to analyze a wide range of SAs at NPP with water-cooled water-moderated power-generating reactor (WWER) at all stages of the accident. Enhancements to the code and broadening of its applicability are continually being pursued by the code developers (Nuclear Safety Institute of the Russian Academy of Sciences (IBRAE RAN)) with OKB Gidropress JSC and other organizations. Currently, the SOCRAT/1 code can be used as a base tool to obtain realistic estimates for all parameters important for computational justification of the reactor plant (RP) safety at the in-vessel stage of SAs with fuel melting. To perform analyses using CC SOCRAT/1, the experience gained during execution of thermohydraulic codes is applied, which allows for minimizing the uncertainties in the results at the early stage of an accident scenario. This study presents the results of the work performed in 2010–2020 in OKB Gidropress JSC using the CC SOCRAT/1. Approaches have been considered to develop calculational models and analyze SAs using CC SOCRAT. This process, which is clearly structured in OKB Gidropress JSC, provides a noticeable reduction in human involvement, and reduces the probability of erroneous results.

关键词: system of codes for realistic analysis of severe accidents (SOCRAT)     design basis accidents (DBAs)     severe accidents (SAs)     computer code (CC)     nuclear power plant (NPP) design     water-cooled water-moderated (WWER)     modeling     model     safety requirements    

Dynamic simulation of a space gas-cooled reactor power system with a closed Brayton cycle

《能源前沿(英文)》 2021年 第15卷 第4期   页码 916-929 doi: 10.1007/s11708-021-0757-9

摘要: Space nuclear reactor power (SNRP) using a gas-cooled reactor (GCR) and a closed Brayton cycle (CBC) is the ideal choice for future high-power space missions. To investigate the safety characteristics and develop the control strategies for gas-cooled SNRP, transient models for GCR, energy conversion unit, pipes, heat exchangers, pump and heat pipe radiator are established and a system analysis code is developed in this paper. Then, analyses of several operation conditions are performed using this code. In full-power steady-state operation, the core hot spot of 1293 K occurs near the upper part of the core. If 0.4 $ reactivity is introduced into the core, the maximum temperature that the fuel can reach is 2059 K, which is 914 K lower than the fuel melting point. The system finally has the ability to achieve a new steady-state with a higher reactor power. When the GCR is shut down in an emergency, the residual heat of the reactor can be removed through the conduction of the core and radiation heat transfer. The results indicate that the designed GCR is inherently safe owing to its negative reactivity feedback and passive decay heat removal. This paper may provide valuable references for safety design and analysis of the gas-cooled SNRP coupled with CBC.

关键词: gas-cooled space nuclear reactor power     closed Brayton cycle     system startup and shutdown     positive reactivity insertion accident    

An old issue and a new challenge for nuclear reactor safety

F. D’AURIA

《能源前沿(英文)》 2021年 第15卷 第4期   页码 854-859 doi: 10.1007/s11708-021-0729-0

摘要: Nuclear reactor safety (NRS) and the branch accident analysis (AA) constitute proven technologies: these are based on, among the other things, long lasting research and operational experience in the area of water cooled nuclear reactors (WCNR). Large break loss of coolant accident (LBLOCA) has been, so far, the orienting scenario within AA and a basis for the design of reactors. An incomplete vision for those technologies during the last few years is as follows: Progress in fundamentals was stagnant, namely in those countries where the WCNR were designed. Weaknesses became evident, noticeably in relation to nuclear fuel under high burn-up. Best estimate plus uncertainty (BEPU) techniques were perfected and available for application. Electronic and informatics systems were in extensive use and their impact in case of accident becomes more and more un-checked (however, quite irrelevant in case of LBLOCA). The time delay between technological discoveries and applications was becoming longer. The present paper deals with the LBLOCA that is inserted into the above context. Key conclusion is that regulations need suitable modification, rather than lowering the importance and the role of LBLOCA. Moreover, strengths of emergency core cooling system (ECCS) and containment need a tight link.

关键词: large break loss of coolant accident (LBLOCA)     nuclear reactor safety (NRS)     licensing perspectives     basis for design of water cooled nuclear reactors (WCNR)    

Multi-objective optimization of surface texture for the slipperswash plate interface in EHA pumps

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0704-4

摘要: Well-designed surface textures can improve the tribological properties and the efficiency of the electro-hydrostatic actuator (EHA) pump under high-speed and high-pressure conditions. This study proposes a multi-objective optimization model to obtain the arbitrarily surface textures design of the slipper/swash plate interface for improving the mechanical and volumetric efficiency of the EHA pump. The model is composed of the lubrication film model, the component dynamic model considering the spinning motion, and the multi-objective optimization model. In this way, the arbitrary-shaped surface texture with the best comprehensive effect in the EHA pump is achieved and its positive effects in the EHA pump prototype are verified. Experimental results show a reduction in wear and an improvement in mechanical and volumetric efficiency by 1.4% and 0.8%, respectively, with the textured swash plate compared with the untextured one.

关键词: electro-hydrostatic actuator     axial piston pump     slipper/swash plate interface     multi-objective optimization     surface texture    

Numerical study of droplet dynamics impinging onto steel plate covered with scale layer

Jan BOHá?EK, Ale? HORáK

《机械工程前沿(英文)》 2010年 第5卷 第4期   页码 389-398 doi: 10.1007/s11465-010-0108-8

摘要: The steel hot rolling process is inseparably connected to an oxide layer called “scale” at high temperatures. Hydraulic descaling of rolled material is a part of all rolling trains. Surface quality after descaling is fundamental for the final surface quality of a rolled product. The process itself is not theoretically well described; various different approaches have been used to clarify the descaling problem. This paper describes the dynamics of high-speed impact between the compressible water droplet and the steel scale layer. The phenomenon is known as water hammer effect. The purpose of this study is to numerically verify the fact that impact stress can be a significant factor during the descaling process. Considering a high droplet impact speed (100–300 ms ), inferential extremely short time interval (0.1–5 μs) peaks in impact pressure reaching 300 MPa can be found. Droplet dynamics was simulated with the help of LS-Dyna solver, whereas the stress analysis was performed in ANSYS interface. The extreme pressure peaks of very short duration in an impact area are a new phenomenon in the descaling theory.

关键词: hydraulic descaling     scale     rolling     water-hammer     descaling theory    

Preliminary design of an SCO conversion system applied to the sodium cooled fast reactor

《能源前沿(英文)》 2021年 第15卷 第4期   页码 832-841 doi: 10.1007/s11708-021-0777-5

摘要: The supercritical carbon dioxide (SCO2) Brayton cycle has become an ideal power conversion system for sodium-cooled fast reactors (SFR) due to its high efficiency, compactness, and avoidance of sodium-water reaction. In this paper, the 1200 MWe large pool SFR (CFR1200) is used as the heat source of the system, and the sodium circuit temperature and the heat load are the operating boundaries of the cycle system. The performance of different SCO2 Brayton cycle systems and changes in key equipment performance are compared. The study indicates that the inter-stage cooling and recompression cycle has the best match with the heat source characte-ristics of the SFR, and the cycle efficiency is the highest (40.7%). Then, based on the developed system transient analysis program (FR-Sdaso), a pool-type SFR power plant system analysis model based on the inter-stage cooling and recompression cycle is established. In addition, the matching between the inter-stage cooling recompression cycle and the SFR during the load cycle of the power plant is studied. The analysis shows that when the nuclear island adopts the flow-advanced operation strategy and the carbon dioxide flowrate in the SCO2 power conversion system is adjusted with the goal of maintaining the sodium-carbon dioxide heat exchanger sodium side outlet temperature unchanged, the inter-stage cooling recompression cycle can match the operation of the SFR very well.

关键词: sodium-cooled fast reactor (SFR)     supercritical carbon dioxide (SCO2)     brayton cycle     load cycle    

冷热电联产系统中气冷式微型透平机的发电耗水、空气污染物排放及成本影响:亚特兰大地区案例研究 Article

Jean-Ann James, Valerie M. Thomas, Arka Pandit, Duo Li, John C. Crittenden

《工程(英文)》 2016年 第2卷 第4期   页码 470-480 doi: 10.1016/J.ENG.2016.04.008

摘要:

城市化进程的加快意味着城市和国际组织需要去寻找各种能够提高能源效率和减少空气中污染物排放的方法。冷热电联产(CCHP) 系统可以同时供暖、制冷和发电,具有提高城市或城市区域能源发电效率的潜力。本研究的目的是在满足建筑热需求(供热和制冷) 的各种运行条件下,对亚特兰大大都市区内的五种常见建筑类型在采用CCHP 系统时的发电耗水、CO2 和NOx 排放,及其经济性进行评价。对于大多数采用或不采用净计量策略的建筑类型来说,以满足每小时热需求去运行CCHP 系统均可减少CO2 的排放量。该系统能否对这些建筑类型产生经济效益,主要取决于天然气的价格、净计量策略的采用和假定的CCHP 系统的成本结构。当建筑物采用净计量策略并且CCHP 系统是以满足建筑物每年的最大热需求而运行时,CCHP 系统的发电耗水量和NOx 的排放量均有最大限度的减少,尽管此时该运行情景会增加温室气体排放和发电成本。CCHP 系统对中型办公楼、大型办公楼和多户型住宅建筑更经济、实用。

关键词: 冷热电联产(CCHP)     气冷式微型透平机     分布式能源发电     发电耗水     净计量    

Initial stiffness and moment resistance of reinforced joint with end-plate connection

Sufang WANG, Yiyi CHEN,

《结构与土木工程前沿(英文)》 2009年 第3卷 第4期   页码 345-351 doi: 10.1007/s11709-009-0054-x

摘要: In beam-to-column joint with bolted end-plate connection, the structural details of column flange reinforced by backing plate and column web panel reinforced by supplementary plate are analyzed. The joint is divided into some basic components, and the initial stiffness of each component is obtained. Especially, the initial stiffness of reinforced components is drawn by theoretical model and finite element analysis. The initial stiffness of reinforced joint can be obtained by assembling the initial stiffness of each component. The design moment resistance of column flange reinforced by backing plate is deduced based on yield line method, and the design moment resistances of other components are deduced based on present codes. The design moment resistance of the reinforced joint is then determined by the minimum of the design moment resistances of all components. By comparison with the results of finite element calculation, it is verified that the method to calculate the initial stiffness of reinforced joint is accurate enough to be used to estimate the rigid behavior of the joint and to make parametric study.

关键词: steel structure     end-plate connection     backing plate     supplementary web plate     initial stiffness     moment resistance    

On the improvement design of dynamic characteristics for the roller follower of a variable-speed plate

Hui Ching FAN, Hong Sen YAN

《机械工程前沿(英文)》 2012年 第7卷 第1期   页码 5-15 doi: 10.1007/s11465-012-0310-y

摘要:

Without modifying the cam contour, a cam mechanism with a variable input speed trajectory offers an alternative solution to flexibly achieve kinematic and dynamic characteristics, and then decrease the follower’s residual vibration. Firstly, the speed trajectory of cam is derived by employing Bezier curve, and motion continuity conditions are investigated. Then the motion characteristics between the plate cam and its roller follower are derived. To analyze the residual vibration, a single degree of freedom dynamic model of the elastic cam-follower system is introduced. Based on the motion equation derived from the dynamic model, the residual vibration of the follower is yielded. The design procedure to improve the kinematic and dynamic motion characteristics is presented and two design examples with discussions are provided. Finally, the simulations of the kinematic and dynamic models by ADAMS are carried out and verified that the design models as well as the performances of the mechanism are feasible.

关键词: cam mechanism     variable input speed     kinematic design     dynamic design     optimal design    

Frequencies of circular plate with concentric ring and elastic edge support

null

《机械工程前沿(英文)》 2014年 第9卷 第2期   页码 168-176 doi: 10.1007/s11465-014-0299-5

摘要:

Exact solutions for the flexural vibrations of circular plates having elastic edge conditions along with rigid concentric ring support have been presented in this paper. Values of frequency parameter for the considered circular plate are computed for different sets of values of elastic rotational and translation restraints and the radius of internal rigid ring support. The results for the first three modes of plate vibrations are computed and are presented in tabular form. The effects of rotational and linear restraints and the radius of the rigid ring support on the vibration behavior of circular plates are studied over a wide range of non-dimensional parametric values. The values of the exact frequency parameter presented in this paper for varying values of restraint parameters and the radius of the rigid ring support can better serve in design and as benchmark solutions to validate the numerical methods obtained by using other methods of solution.

关键词: circular plate     frequency     elastic edge     rigid ring     mode switching    

标题 作者 时间 类型 操作

A thermoelectric generator and water-cooling assisted high conversion efficiency polycrystalline silicon

Zekun LIU, Shuang YUAN, Yi YUAN, Guojian LI, Qiang WANG

期刊论文

Corrosion mechanisms of candidate structural materials for supercritical water-cooled reactor

Lefu ZHANG, Fawen ZHU, Rui TANG

期刊论文

Studies on advanced water-cooled reactors beyond generation III for power generation

CHENG Xu

期刊论文

Feasibility analysis of modified AL-6XN steel for structure component application in supercritical water-cooled

Xinggang LI, Qingzhi YAN, Rong MA, Haoqiang WANG, Changchun GE

期刊论文

Experimental study of critical flow of water at supercritical pressure

Yuzhou CHEN, Chunsheng YANG, Shuming ZHANG, Minfu ZHAO, Kaiwen DU, Xu CHENG

期刊论文

Experience gained in analyzing severe accidents for WWER RP using CC SOCRAT

期刊论文

Dynamic simulation of a space gas-cooled reactor power system with a closed Brayton cycle

期刊论文

An old issue and a new challenge for nuclear reactor safety

F. D’AURIA

期刊论文

Multi-objective optimization of surface texture for the slipperswash plate interface in EHA pumps

期刊论文

Numerical study of droplet dynamics impinging onto steel plate covered with scale layer

Jan BOHá?EK, Ale? HORáK

期刊论文

Preliminary design of an SCO conversion system applied to the sodium cooled fast reactor

期刊论文

冷热电联产系统中气冷式微型透平机的发电耗水、空气污染物排放及成本影响:亚特兰大地区案例研究

Jean-Ann James, Valerie M. Thomas, Arka Pandit, Duo Li, John C. Crittenden

期刊论文

Initial stiffness and moment resistance of reinforced joint with end-plate connection

Sufang WANG, Yiyi CHEN,

期刊论文

On the improvement design of dynamic characteristics for the roller follower of a variable-speed plate

Hui Ching FAN, Hong Sen YAN

期刊论文

Frequencies of circular plate with concentric ring and elastic edge support

null

期刊论文